
1

Programming for Biologists
Seminar Biology 8250 Sec:001(20526) Spring 2015

Time/Location BioLife 327 Wed 5:30pm – 8:00pm

Instructor: Jody Hey BioLife rm 206 hey@temple.edu
 Office hours by appointment
TA: Alanna Durkin BioLife rm 313 alanna.durkin@temple.edu
Office hours Tuesday mornings from 9:30 to 11:00 and by appointment

Course Basics:
This will be a course in the Python programming language using examples and
problems from biology. In the latter part of the course students will propose
and then develop a significant program for solving a particular problem
(perhaps inspired by their own research).

Course Policies:

1. Students must have and bring to each class a fully functioning laptop
computer.

2. Students are responsible for their own computers and for all software
they install on their own computers. This includes backing up their
work, for example to a jump drive or to Temple Box or some other
place. (Instructor and TA are not a source of IT support).

3. Attendance is required. Students are expected to attend all classes and
complete all assignments. Students who miss more than one class
without having obtained permission will have their grade reduced.

4. Policy on Plagiarism and Academic Integrity: All students are bound by
the Temple University Policy on Academic Honesty
(http://bulletin.temple.edu/undergraduate/about-temple-
university/student-responsibilities/#academichonesty) and any
student who appears to be plagiarizing or cheating will be reported
to the academic dean. Students are encouraged to work together in
class and outside of class. Also for some assignments students may
use examples of programing code in textbooks or on the internet, and
use this to help write their own programs. However all students
must turn in only original work and students must not turn in any
assignment that is based on another person’s work.

5. The course grade is based on weekly assignments and a final project.

2

6. During lecture parts of class time, cell phones are not to be used, and
web browsers are not to be directed at sites other than those being
used for the lectures. When the instructor or TA is speaking, typing
stops.

3

WEEK 1

Getting Started and Python Basics

The Python Programming language

- a "high level" language
o far removed from machine code

- source code is highly readable by people
- designed for short development time (i.e. fast program development)

o core syntax (the set of basic language elements) is small
o the standard library (set of precompiled functions) is large and

comprehensive
- general purpose (suitable for all sorts of different problems)

Python History:

- Started in 1991 (and still overseen) by Guido van Rossum
- Has grown steadily in use
- Still being developed and changed

o Often times you will read something about using python, and it
will turn out that it is for an older or a newer version of the
language than you are using.

o The latest version of Python is 3.3
o We will use version 2.7, as not all of the popular modules

(libraries) are current with the latest version of Python.
- Used in many different fields, including bioinformatics

The process of ‘installing’ a programming language means that you install a
program that can convert source code into commands the computer can
understand.

Source code is a text file (usually written by a person) in a specific computer
language (e.g. Python, C, Java)

Traditionally there are two types of source-code to machine-code converters:

- compiler. A compiler reads source code and produces an executable
file that can be run on its own

4

o once a program is compiled, it can be run without having the
compiler program

- interpreter. An interpreter reads the source code and then
generates machine code and then runs the machine code.

o When using an interpreter, ‘running’ a program means using
the interpreter

o Python is an interpreted language
o To run a python program you must have the python

interpreter on your machine
- There are lots of exceptions and ways around this distinction

The standard Python installation includes an integrated development
environment (IDE), which includes:

- a user interface (a shell that is called IDLE) that serves as text editor
and debugger (debugger may not work on macs)

- the Python interpreter

There are many IDE’s for python that are free or available for purchase and
that are more powerful than IDLE. Some that I have used include:

- pyscripter (for Windows only)
http://code.google.com/p/pyscripter/

- spyder (for all platforms) http://code.google.com/p/spyderlib/

Directory structure and file naming:

On your laptop, create a folder to hold your work for this semester.
Also create a folder for this week’s work.
When naming folders and files, is us usually best to avoid introducing spaces

e.g. ../prog_class_2015/week1

For all python program files be sure to put ‘.py’ on the end!.

When naming files that are to be turned in follow this convention

week#_lastname_firstinitial_otherusefulstuff

http://code.google.com/p/pyscripter/
http://code.google.com/p/spyderlib/

5

for example for today’s assignment I would name the python program to be
turned in:

week1_hey_j_program.py

Some rules to follow for your computer:

1. use lowercase letters when naming folders and files. Operating systems
differ in how much they are case sensitive. Most bioinformaticians end
up using multiple operating systems, so to avoid confusion they fall
back on just naming things with lower case letters.

2. When naming folders and files, is us usually best to avoid introducing
spaces

3. For the folder where your work will be, (e.g. ../prog_class) you want
your file viewer to show you all parts of the names of the file and not to
hide file extensions. In windows this means going into windows
explorer, clicking on ‘organize’ and then ‘folder and search options’ and
then on ‘view’ and then clicking on then ‘Show hidden files, folders and
drives’

4. Back up your class folder after every time you work in it. For example
to a jump drive.

Using IDLE as a command line interface for python statements

The command prompt in IDLE is ‘>>>’
At the command prompt you can enter things called expressions and
statements.
All text is case sensitive in python:

- enter: help()
o this starts running the program called ‘help’
o the ‘help’ program has its own command prompt, ‘help>’
o hit return to leave the program and return to the command

prompt
- try upper case, enter: Help()
- ‘help’ is an example of a built-in function. All built-in python

functions have lower-case names.

6

Basic Data Types in Python

- a piece of data is a value
- every value in python has a type (or a class)
- use the type() command to show the type of a value in python
- int (i.e. integer)

o a number without any decimal point
o enter: type (1)

- float (i.e. a floating point number)
o floating point numbers are stored in a kind of scientific notation

with a mantissa and an exponent
o the exponent may or not be shown
o floating point numbers cannot always be exact because of the way

they are stored in computer memory
o enter: 2.3
o enter: 2.3e-7
o enter: type (2.3)

- bool (i.e. a boolean value, can be either True or False)
o enter 1==2 (with two equal signs, not 1)
o enter: type(1==2)
o enter: type(1=2) {i.e. just one equal sign}

- why did you get an error?
- string ‘ a sequence of symbols (numbers, letters, punctuation)

bracketed by quotation marks
o you can use single or double quotes or triple quotes
o double quotes are used for strings in these lectures
o triple quotes are usually reserved for help text inside function

definitions.
o Enter: type ("hello")
o Enter: print "hello"
o Enter: print hello

- Why did you get an error?
- list - a list contains a series of elements, each of which can be any

data type, enclosed in brackets and separated by commas
o example [1,2.3,"hello"]
o enter: type ([1,2.3,"hello"])
o enter: type([1,2.3, "hello")
o type ([1,2.3,"hello")

- why did you get an error?

7

- Dictionary – a special data type that can be used to look up
information. A dictionary is enclosed by curly braces, {}. Each item
in a dictionary includes a ‘key’ followed by a colon, :, followed by a
value. The entries are separated by commas. A key must be an
immutable (non-changeable) type, whereas values can be of any
type.
o example {1: “hello”, 2: “goodbye”}

- python recognizes many values automatically and assigns them a
type.
o Numbers: e.g. 1
o Strings: e.g. "hello"
o Lists: e.g. ["a",1,3.7]

- Names that are not assigned a value do not automatically have a type.
o Enter: a (i.e. without quotes)
o Python does not know what a is

Variable - a name that refers to a value

- all programming languages have some way to implement variables
- variables are assigned a value using an assignment operator
- in Python, and most programming languages, variable names must

begin with a letter, but can also consist of letters and numbers after
the first letter

Assignment

- in python the equal sign, = , is the assignment operator
- the equal sign does not mean ‘equal’, rather it is a command to assign

a value to a variable. (use two equal signs ==, to check equality, be
careful not to confuse assignment with checking equality)

- enter: a = 1
- Now enter: a
- Now you can use a in places where you would like to use the value 1.
- enter: print 1
- enter: print a

Python has 31 keywords – these words are built into the language and cannot
be used for other purposes, in particular they cannot be used as variables

and del from not while
as elif global or with
assert else if pass yield

8

break except import print
class exec in raise
continue finally is return
def for lambda try

Operators
An operator is a pre-defined symbol that tells the interpreter to do a specific
operation. They are the building blocks of most expressions and statements.

 Arithmetic operators, e.g. '+', '*', '-' and '/'
 The assignment operators: e.g. '=', '+='
 Comparison operators: e.g. '==', '>', '>='
 Membership and Identity operators: e.g. 'in', 'not in' , 'is' and 'is not'
 Many operators will work on many different data types, for example '+'

o Enter: 2+2
o Enter: "a" + "b"
o Enter: "a" + " " + "b"
o Enter : [1,-4.5, 'c'] + ["hello"]
o Enter : [1,-4.5, 'c'] + "hello"

 Why did this last example give you an error?

Expressions and Statements
Expression: Something which evaluates to a value. (e.g. 2+2)
Statement:

 A line of computer code that does something, that can be
executed

 Statements can include expressions
 We have already used several statements:

o Assignment statement (i.e. a = 1)
o Print statement
o type() statement

The IDLE shell will automatically evaluate statements and expressions.

 IDLE will directly evaluate expressions and statements that are
entered at the prompt.

 For example the statement a = 2+ 2 could be used as a line in a
computer program.

o Enter this at the prompt: a = 2+2
o What happened?

9

 The following are examples of expressions - they are not complete
statements. They could not be used by themselves as a line in a
program. Try entering them at the prompt. What happens?

 2
 2 + 2
 pow(2,3)
 a

o remember that IDLE evaluates statements and expressions

Writing a program

Go to ‘file’ and click ‘New Window’. This opens up another window that looks
kind of like the IDLE interpreter window but instead is a text editor.

 Enter: ## this is my ‘hello world’ program
o The '#' sign, or multiple '#' signs, tells the interpreter that the

lines is just a comment and should be ignored
 Enter: print "hello world"
 Click on file, save, or hit cntrl + s, to save the file. Give it a name that

explains a little bit of what it does.
 Always save python program files with the extension ‘.py’. If you don't

they won't run. The '.py' extension tells the python interpreter that it is
a python text file.

 On a windows machine, hit function key 5 (i.e. f5) to run the program.

Functions

 Functions are a type of python object. We already learned about some
other types, like ‘integer’, ‘float’, ‘string’ and 'list'

 Python has many built in functions (i.e. instances of type 'function').
 Functions are often grouped into modules.
 New functions can be defined using the ‘def’ statement.
 To call a function (i.e. to get the function to do what it does), type the

name of the function followed by parentheses. Depending on the
function there may be arguments inside the parentheses.

 Functions ALWAYS have parentheses after them, even if empty.
 Example, the ‘pow’ function takes two arguments, each of which must

be a number or a variable that has a numerical value.
 e.g. enter: pow(2,3)

10

Importing modules

 Modules are files that contain python functions. By importing a module
into your program you get to use all of the functions that are in that
module.

 The ‘import’ command is used to import a module.
 Example: enter: import os
 This will import the os module, which contains many functions that are

used use features of the operating system that you are using.
 Enter: dir(os)
 Enter: help(os)

 For example, to find the current directory that you are in, use the

‘getcwd()’ function
 Enter: os.getcwd()

o Notice the double backslashes in the string. These are there

because backslashes ('\') are often used as part of special
characters. For example a tab character is often coded as '\t' and
an end-of-line character is coded '\n'. For this reason if you want
to use an actual backslash as itself, and not as part of a special
character, you need to precede it by another backslash.

 Try using the help command to get information on the getcwd function.

Write another program

 Go to file and click ‘New Window’
 Enter: # a program to get the current directory and save the value in a

string
 Enter: import os
 Enter: dirstring = os.getcwd()
 Save the file, and run it.
 What happened? Did any results print out? Why not?
 To see that IDLE now knows the value of 'dirstring', enter: dirstring

11

 Go back to the program and add one more line to the end: print dirstring

 Now run the program again.

The ‘help’ and ‘dir' functions

 The ‘dir()’ command lists all of the methods and attributes that are
associated with an object.

 enter: dir(os)
 try some other examples, e.g. 'dir(1)' 'dir(dir)' dir('hello')
 What do the results tell you about the dir function?

 What you see is a listing of all the things associated with the os module.

 If you just type ‘dir()’ you will get a listing of everything that you have

loaded into the interpreter.

 The ‘help()’ command returns documentation that is associated with
objects.

o enter: help(1)
o enter: help(dir)

The ‘type()’ command
We already used this, but it is good to remember. Sometimes we lose track of
just what type something is. If you are unsure, or a variable is not behaving
the way it should, use the type() command to check its type.

Working with strings

 The simplest string is an empty string, "" (two adjacent double quotes)
 To see the attributes of a string
 Enter: dir("")
 What does this tell you?

 For example to change the case of a string, you can use the swapcase

function that is an attribute of all strings.

12

 Enter: a = ‘teststring’
 Enter: a.swapcase()

 You don’t even have to use a variable. In python you can chain

expressions to make a larger expression.
 Enter: "teststring".swapcase()

 A string is kind of like a list of characters.
 To pull out a certain character of a string, as a string use brackets.
 Enter: a[2]

 You can pull out a subset of characters using the slice notation
 Enter: a[2:6]

Working with lists

 Lists are data types that are bracketed by parentheses
 They can contain pretty much any other data type, including lists.
 You can access any element of a list using a bracket notation (like with a

string), and you can access a slice of a list.
 mylist = ["hello", "world", a]

 Try combining you’re list named mylist and the list [1,2,3] using the '+'

operator.

 Python creates a single new list every time you execute the [] expression,
and Python never creates a new list if you assign a list to a variable.

o A = B = [] # both names will point to the same empty list
o A = []; B = [] # independent lists

 Try the following
o create a short list and assign it to the variables a and b:

 A= B = ["hello", "world"]
o assign the zero element of a to "goodbye"

 A[0] = "goodbye"
o Now check the value of A and B.
o Notice that because B is assigned to A, it returns the same value.

 Now make two independent lists
o Create a short list and assign it to A

13

 A = ["hello", "world"]
o Create an identical list and assign it to B

 B = ["hello", "world"]
o assign the zero element of A to "goodbye"

 A[0] = "goodbye"
o Now check the value of A and B.
o Notice that because B is not assigned to A, it returns the original

value of B and not what A is now.

Working with Dictionaries
- Make an empty dictionary

o a = {}
- add an item by calling the dictionary with [] enclosing a new key and

assigning a value to be associated with that key
o a[1] = “car”
o now the value of a is {1: 'car'}

- Make a dictionary with some items in it
o b={"friend": "John",

"girlfriend":"Mabel","family":["mom","dad","sister","brother"]}
o notice that a key can be any immutable type, such as a number or

a string, and a value can be any type. Try adding a new item.
o b[1] = False
o now check the value of b

- There is no order to the items in a dictionary and you cannot
reference the items as if they are items in a list or a string.

Python is an ‘object-oriented’ language

- we can think of everything in python as an object
- variables are objects
- every object has 3 things:

o a type or class
 enter: type(a)

o content (i.e. the value of the variable)
 enter: a

o a unique identity (the place where the variable is in computer
memory)

 we can find the identity of an object by using the ‘id’
command

 enter: id(a)

14

- the names of variables are maintained separately in a part of
memory set up by the program and called the 'namespace'

- The identity and the type of objects cannot be changed
o If you think you have changed the identity and type what has

actually happened is that the old object was destroyed and a new
one, with the same name has been created.

- Depending on the type of an object, it may be possible to change the
content (i.e. the value).

Assignment for today :Write a program
Close IDLE and open it again. This will cause any modules that were loaded
and any variables you used to be lost. Alternatively, click on 'Shell' and
'restart shell'.
Open a new file and save it in your week1 directory.
Be sure to give it a name following the rules for naming files that are turned in
for assignments.
After the program is done and runs, turn it in under the Assignment for
Week1 on the Blackboard site.

This program will do lots of simple python things. Be sure to include
comments in your program file.

What your program should do:

1. Addition and printing:
o add up the numbers from 1 to 10 and print the result to the screen
o add up 10 strings, each with a single, different letter in it, to

make one string, and print the result to the screen
o make two lists and try adding them together and print the result.

2. Using dir, assignment, type() and print
o call the dir() function for a list (e.g. use: dir([])) and assign a

variable to what the dir() function returns.
o Print the type of this variable to the screen using the print

command and the type() function (it should be a list)
o Print this variable to the screen

3. Working with lists
o Using the list from part 2, print the length of the list to the screen

(use the len()) function

15

o Do a reverse sort of the list using the sort() function that comes
with lists.

o Print the sorted list to the screen followed on the same line by the
number of items in the list

o Append to the list the string: “test”.
o Make a new list using the brackets, [] and print the value
o Make a new list using the list() function

4. Working with dictionaries
o Create a dictionary using curly braces that has as values the

names of 5 of your friends.
o Print the keys of the dictionary
o Print the values of the dictionary
o Print the items in the dictionary
o Make another dictionary using the dict() function and put in it the

names of two other friends.
o Print the items in the second dictionary.
o Try creating a new dictionary using something like

dict(1stdictionary.items() + 2nddictionary.items()). Print the
result.

o Try adding a new item, that is itself a dictionary, to one of your
dictionaries. Print the result.

5. Using functions in a module
o Get the week1module.py program from Blackboard and put it in

your working directory
o In your program import this module
o In your program, create a list of positive numbers (any numbers,

as many as you want)
o Call the logsum() function in week1module by passing to it this

list of numbers.
o In your program create a list of strings (any strings, as many as

you want).
o Call the joinwords() function in the week1module by passing to it

this list of strings.
6. Using the os module

o Import the os module and use it to get the name of the current
directory. Save this directory name.

o Use the os.chdir() function to change the current directory to the
root directory of your computer.

16

o Figure out how to get a listing of all the files that are contained in
the current directory. (use help() and/or dir() to find any
function that belong to the os module that can be used for listing
the contents of a directory), and print the listing to the screen.

o Use the os.chdir() function to return to the original directory
(using the saved name).

7. Getting input from users
o Receive a number as input from the IDLE command line (read

about the input()) function)
o print the number back to the screen
o Receive a typed sentence as input from the IDLE command line

(read about the raw_input()) function).
o Convert the string to a list of words (read about split(), which

belongs to strings).
o Print the list of words back to the screen in reverse order (read

about reverse(), which belongs to lists)

Be sure to run your program to make sure it does what it is supposed to do.

Some things that may help:
 Try things out at the IDLE command line before putting them in your

program.
 use the dir() and help() functions to find out about what belongs to

things and about how they work. Also don't hesitate to look things up
on the internet.

 Be sure to include comments in your code so that a person reading the
file can understand what you are doing

