Keyboard Shortcuts in IDLE

Programming for Biologists

January 24, 2015

If you choose to use IDLE as your Python editor, it’s wise to get comfortable with the many
keyboard shortcuts offered in the program. Here’s a quick introduction to the functions
IDLE offers to make your coding as efficient and effective as possible! If there is a shortcut
difference between IDLE on Windows and Mac, the difference is noted giving the Windows
version first followed by the Mac version. The plus sign in the shortcuts can be completely
ignored as it just indicates that you need to hold down all of the indicated keys at once to
perform the action.

Navigating commands in the shell

When you start an interactive session in the IDLE shell, one of the most common things you
may find yourself doing is wanting to run a command again or slightly alter a line you wrote
previously to see what changes. In this simple example pictured below, I've started defining
some variables to work with.

>»> a = [1,2,3]
>»> b = [6,5,6]
x> o = [T,8,9]
»»»> d = [10,11,12]
e

After creating the variables, I realize I actually want to change the value of b to something
different. It is a simple enough command that I could consider re-writing the entire line,
but most real code will be more complex, especially as you progress through the course.
A faster way to correct this line is to retrieve the command using Alt+P on Windows or
Control+P on Mac three times to scroll up to b.

»»> a = [1,2,3] >>> a = [1,2,3] »>» a = [1,2,3]
»»> b = [6,5,6] >>> b = [6,5,6] »»>» b = [6,5,6]
»»> c = [7,8,9] >»> ¢ = [7,8,9] »»» ¢ = [7,8,9]
»»»> d = [10,11,12] >»>> d = [10,11,12] »»» d = [10,11,12]
»»»> d = [10,11,12] >»> ¢ = [7,8,9] >>>[b = [6,5,6]]|

It’s easy to scroll up through commands past the one you wanted to edit. If for instance
I had accidentally scrolled up four times and reached variable a, I would have to scroll
down one command using Alt+N on Windows or Control4+N on Mac. The P and N refer
to the Previous command and the Next command in the order they were entered in the shell.

Another issue sometimes encountered in the shell is a runaway command that needs to
be cut short. This normally occurs when you find an error in your code like an infinite
while loop or setting the wrong bounds on a for loop that cause it to go through more data
than you intended. When this faulty command starts running, it monopolizes all of Python’s
resources and prevents you from doing anything else. One option to regain control is to close
IDLE. Another is to restart the shell using the option in the Shell menu or the shortcut
Control+F6. The only problem with these options is that you lose all of the variables and
functions you created during your session. You wouldn’t be able to check any output to see
what may have gone wrong with your program! An alternative is to hit Control4C to kill
the process without losing the environment you created.

»»» while True:
______ ,
1111121111111 1111111111111111711111111111
1111121111111 1111111111111111711111111111
11111111111111111711111111111117111111111111
1111121111111 1111111111111111711111111111
1111121111111 1111111111111111711111111111
i111111111111112111111111111111111111111111
111111111111 11111111111111111
Iraceback (most recent call last):
File "<pyshellf§l0>", line :, in <module>
print 1,
File "C:“Zvthon27hlibhidlelib\Py3hell.pv", line 1360, in write
return 3elf.shell .write (s, ==1f.tags)
EevboarcInterrupt

e e

Managing and running script files

Another frequent task you’ll be performing from the shell will be to open files. To open a
new blank file from the shell, press Ctrl4+IN on Windows or $+N on Mac. Hitting Ctrl4O
or $+0 instead will bring up the Open File dialog box, although it is usually faster to use
the Recent Files option under the File menu.

Once you have your script file of choice open, back up your code frequently with save short-
cuts. IDLE’s save option is the same as that of most other programs, so hitting Ctrl+4S or
$+S will instantly save any changes to your .py file. If you wish to save the file under a

new name, all it takes is a quick Ctrl4+Shift+S or $+Shift+S to open the Save As dialog
box for your file. Since IDLE requires you to save your script every time before you run it,
your work goes much quicker when you practice combining this shortcut with the keyboard
shortcut to Run Module (F5).

Writing and formatting code

When editing code in the IDLE shell or script, you can use most of the common shortcuts
for copying, pasting, and selecting text:

Cut: Ctrl+X or $+X

Copy: Ctrl4+C or 3$+4C

Paste: Ctrl4+V or ¥+V
Select all: Ctrl+A or +A

The universal Ctrl+F or $8+F also works to find words or text in the document and makes
searching through your script easier. If you want to find and replace text, use Ctrl4+H on
Windows or $#+R on Mac. Additionally, should you mistype something in either a script or
the shell, the common Ctrl+Z or $+7Z functions in IDLE to undo your most recent action.
To redo something you’ve undone, use Ctrl4+Shift+Z or $+Shift+Z.

There are more keyboard shortcuts available in IDLE that are more specific to the de-
mands of writing Python code. Frequently when you’re testing or debugging a program,
you’ll comment out large sections of code to see exactly which commands are performing
correctly and cut out unnecessary computations. To comment out one line in a script, hit
Alt+3 or Control+3 with your cursor on that line to instantly add a ## to the beginning
of that line.

F7Example =cript to comment ##Example =script to comment
a =1 a=1
b= 0 = 2

2 =
c =3 c =3

To remove the ## from the beginning of a line that you want the script to run now, press
Alt+4 or Control+44. These same shortcuts will also comment or uncomment whole sec-
tions of text if you use them while several lines are highlighted.

F¥Example =script to comment F#Example =cript to comment
a =1 a =1
B =2 =2
c =3 c =3
F¥S5ection to comment out F#5ection to comment out
for i in range (100) : ##for i in range (100) :

a 4= 1 # a+=1

b += a FF b += a

c=a+b +# c=a+b

If you hit the comment shortcut on a line that it already commented, IDLE will keep adding
regardless. Similarly, if you use the uncomment shortcut on a section of code that includes
a header that you want to remain commented, that header can remain commented out as
long as it has more than two #’s at the beginning of the line. Any # that are not at the
beginning of a line of code are unaffected by these shortcuts.

Another formatting technique you may need to apply to a whole section is indenting or
dedenting. Python depends on whitespace to know what commands are nested within func-
tions or loops or if statements. For example before writing a function, you may test out the
code as a series of commands to make sure your function will do what you expect. When
you're certain it will work correctly, you then want to add the def statement in front of it to
turn the set of lines into a function. However, besides adding the word def, you also have to
indent everything after that line to tell Python which lines are part of the function. Pressing
Ctrl+] or $+] will indent any highlighted text by one tab.

##Example function code F¥Example function code
def printmat (mat): def printmat (mat):
""rEFunction printmat takes a list of lists "rrFunction printmat takes a list of lists

in a row separated Dy a tab

e

n & row separated by a tab

ting the next row on a new line.""" roWw on a new line,"™""

on a new 11

for j in range (len{mat[i])}): for j in range(len(mat[i])):
print mat[i]l [j],™\t", print mat[i][j],"\C",
print print

Notice that even the indented portions within the for loop also indent one extra tab, main-
taining your code structure within that section. When you need to unindent a section (for
example when a function or loop is throwing errors and you need to take it apart to see
what’s wrong), hit Ctrl4-[or $+[to dedent the highlighted text.

There are some other shortcuts listed in the menus of IDLE that you may find useful. This
guide is just an introduction of what you are most likely to use most frequently!

